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0. Introduction and Summary

A variety of Markov chains in continuous time modeling stochastic

systems of applied interest have for their state space a rectangular lat-

tice of states B= {(j,n) : 0 <j <J, 0 <n <N}. When the number of
states (J+1) (N+1) is large, say > 100, evaluation numerically of the
ergodic distribution, and moments of exit times and entrance times to sub-

_sets of interest is costly and simulation is often resorted to.

et Rk, 6 T

For many such chains, changes in columm index j or row index n at
transition epochs have values 0, + 1. The chains may then be described
as column-continuous and row-continuous respectively.
When such row-continuity is present, for example,
systematic treatment of the row subséts of states as probabilistic entities
provides a theoretical basis for the discussion of the chain, and algo-
rithms for the description of the chain involving matrices of order J+l

rather than (J+1)(N+1), better suited to the capacity constraints of com-

puters. The procedure may therefore be described as rank reducing.
Algorithms based on such treatments of rows as entities have been

developed by M. Neuts [10,11], when N is infinite, for the study of queues

with service times or interarrival times describable in terms of "phases".
His algorithms deal with state spaces for which N=» and the transition
- rates for the chain are independent of row index n, except near the boundary

n=0. His methods are oriented largely toward the ergodic behavior of such

chains.
The present treatment is primarily directed towards finite markov
chains with transition rates dependent on both j and n. Entrance and

exit time moments are obtained, along with the ergodic distributions.
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Entry and exit time distributions, obtained via the Laguerre transform
18], will be discussed elsewhere.
It should be emphasized that the row or column orientation, natural
: for some systems, may be an effective tool for chain description even
when no natural row or column meaning is present.
In the first section, the basic bivariate process is described and

notation is developed. Several motivating examples are given. Subsequent

- sections develop the methodology, and algorithmic procedures, and discuss

i computer efficiency. In a concluding section a tandem queue with Poisson

© arrivals, exponential service of different rates, multiple servers, and

finite waiting rooms is presented.




§l1. The Bivariate Markov Process B(t) = [J(t),N(t)]

Consider a bivariate Markov process B(t) = [J(t),N(t)] on B = JxN

where J = {j: 0 <j <J}, N= {n: 0 <n <N}. In a typical context, the
process J(t) is a finite Markov chain in continuous time (independent of
N(t)), but N(t) is not Markov and depends on J(t). The formalism we
develop is more general, however, and does not require that J(t) be Markov.

Suppose that B(t) is governed by the set of hazard rates

e A el i

; : i, ke J; n, . i i ; : .
{V(J,n),(k,m) j,ke J; n,meN}. Of interest in this paper are irreducible
finite Markov chains B(t) for which N(t) is skip-free in both directions

» so that

Vii,m), k,n) " 0 if |n-m| > 1. 1.1

It will be convenient to work with the set of states {(j,n)} with
common row index n as an entity, and to introduce the corresponding

. + o] - . s o .
notation o S Y to designate the transition rate matrices of order

J+1 by
(¢]
® & = Dgm,am! (-2
2 _ .
| ® 3 = DVy,n),k,nen)]
) © Y = Dg,ny,ma-nl
F We will also work with the matrix
St Mty a.3)

and the diagonal matrix

— vy . - ﬁ




)
1
i
|
1

Yoo = e [T IV, m! 1.4

In the same spirit we will employ the transition probability matrices

of order J+l

1 2an® * Plmam®) 5 Py, am® 7 PIEO = G20 - G.m)

3 (1.5

*E and state probability row vectors

.

;i En(t) = [P(j’n)(t)] ; P(j’n)(t) = P[B(t) = (j,m]. (1.6)

?55 The ergodic row vectors will be designated by 1
;' 2: = [e(j,n)] a.7mn

where e(j,n) = ii: p(j,n)(t)' Laplace transforms will .often be used, with

the notation typical of subsequent usage,

o) = Lpf@] = [ ple)e”™t ar. (1.8)
0

We will also employ the notion of a matrix p.d.f. [S].

Def. 1.9 A matrix function f(1) = [f (7)] is a matrix p.d.f. iff

a) fm(x) > 0 ¥n,n,x '

, b) 1{ / fjk(x)dx = 1 0<j<J.

Such matrices play an important role in processes defined on a Markov

chain [7] and in Markov renewal processes. In ou: setting fmn(x) = 0 for '

x < 0.
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Examples
To motivate the analysis that follows and indicate the prevalence of
such row-continuous processes some examples are appropriate.

A. Contiguous Processes

Any chain B(t) = [J(t),N(t)] on B = {(j,n) |0 <j <J, 0 <n <N}
for which Vi,m, Gom) 0 if |j~k| > 1 or |m-n| > 1 will be called con-
tiguous. The row-continuous chains are more general in that the marginal
Tow process need not be skip-free.

For all such contiguous processes the transition rate matrices (1.2)
are tri-diagonal (cf Fig. 1.A). All such processes that are irreducible are
amenable to the methods we describe.

B. Contiguous Horizontal-Vertical Processes

A subset of the contiguous processes are those for which either J(t)
or N(t) can change, but not both simultaneously. If, for example, J(t)
and N(t) were independent truncated birth-death processes, B(t) would be
horizontal -vertical, since the probability of simultaneous change would
be zero.

Another set of processes B(t) = [J(t),N(t)] has J(t) an independent
truncated birth-death process and N(t) a dependent birth-death-like process
for which the upward and downward transition rates change when J(t) changes.
One example of this type is a communications link carrying both voice and
data [1]. We note that for such processes 3; and 3; are diagonal. See
Fig.1.B.

C. Tandem Queues with Blocking

A contiguous process of interest is the tandem two station series

queue where each station Has finite waiting room, arrivals are poisson with
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rate A, and service times are exponential with service rates Nys Ny For
this process g; is diagonal, g; is upper diagonal, and 33 is lower
diagonal. (A matrix a = [aij] is upper diagonal if aij # 0 implies
j = is1.) See Fig, l1.C.
The methodology treated here allows each station to consist of a
finite number of servers. Various types of blocking and feedback could
as easily be analyzed, although the example of §7 has blocking defined by,
the first queue stops serving while the second waiting room is full.
Extensive numerical analysis and further discussion of this tandem
queue model can be found in §7.

D. Assembly Line

One interesting non-contiguous process is an assembly line with two
machines in sequence and finite buffer storage between. The marginal
process J(t) describes fluctuating working and non-working states of the
two machines, M1 and M2 which are governed by failure rates Hps Hy and
Tepair rates Al, Az respectively. The two machines process work at the
same rate of speed, i.e. have a common hazard rate p for completing their
operation. When the second machine is down, items accumulate in the buffer.
When the first machine is down, the flow of incoming items is cut off and
the second machine goes idle after the buffer is emptied. The first machine
stops when the buffer is full. N(t) is the number of half-finished items
in the buffer.

. + - . X
For this model, both i and Vv, are diagonal with two non-zero

elements. The transition rate matrixx : has a zero diagonal, and (23)1’

has a zero diagonal. See Fig. 1.D.

AL rtat
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§2. Passage Time Densities

The description of the ergodic and dynamical behavior we will develop
is based upon the passage time densities for the bivariate process. To
exploit the skip-free feature of row-continuous processes, the passage
times between states of adjacent rows are treated as building blocks. The
focus on a row of states as an entity then gives rise to a matrix probability
density function describing the joint distribution between the time of
arrival at the adjacent row and the state reached, as a function of state
oonrigin. From the passage time p.d.f.'s for adjacent rows one can then
describe the regeneration times for the states of a row and hence the
ergodic probabilities., This will be clearer from the details of the
development.

To discuss the passage time densities it will be useful to work with
the lossy process J;(t) for row n on the set {(j,n)} for which other states

of B (i.e., other rows) are absorbing. Let

P*(5my, k,m) () = PLI(E) =K, N(&") =m, 0<t' <t | J(0) =3, NO) = n)

and as for (1.5) let g;n(t) = [p‘éj n), (k n)('c)]. Then since

d _ 0 : .

ET'Eﬁn(t) = . g;n(t)v + p* (t)ih we may rewrite B;n(t) in the form
p* (t) = exp{g;;t} , (2.1)
“nn

where 3; is the Q matrix for the lossy process, i.e.,

& = -t V. (2.2)

Note that B;n(t) is strictly substochastic. From (2.1) one then has for

L ) B L[g;n(t)]
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[ -]
} ™ (s) = [ eStpr()dt = [sI-0Q]1, s>o. (2.3)
: =nn 0 =nn = ey .
f"é The chain B(t) is uniformizable [6 ] in the sense that there exists 3
a v such that © > Vv > max o, when J and K are finite,
. G,m)  (k,n) (G,m), (k,n)
g that is B is finite. If we let
X + _ 1 +«+ - 1 - o _ 1 0
s T - SR SN (2.3a)
~ we have from (2.3)
0,-1 ;
™ (s} = [(s+V)1 - va ] " . (2.4) ;
=nn - -n )
i
;' To proceed further, we require the passage time densities and some ‘
associated notation. Let s:\'jk(t) be the joint probability density that
2 ’ i
k! the set {(j,n+1) : jeJ} is visited for the first time at (k,n+1) and that i

the time of visit is T, so that Z f s+_. (t)dt = 1, Similarly, let s',.k(r)
kK 0 n;jk n;)
be defined with respect to visiting the set {(j,n-1) : jeJ} for n > 1. The i

irreducibility of B(t) implies that (cf def. 1.9) 3;(0 = [s;'jk(t)] and

;;(t) = [s;;jk(t)] are matrix p.d.f.'s. Correspondingly, |
[} - -] i |
;; = f ;;(t)dt and ;_"1 = | g;(t)dt are stochastic matrices. In terms of :
- 0 0 ‘
+ + - -
the Laplace tra:sfoms, g,(s) = L[gn(t)] and %(5) = Lgl(t)]. and moment

macrices ' = [ t s'(t)dt, W= [Tt s*(t)dt one has
-1 -n -n 0 -

0
+. + + . -ﬂ_ +
5@ , Ts g“(S)I <0 (2.5a) |
{
S, gn(O) ’ gn i g_n(s)l . (2.5b)
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The skip-free feature of the row~-continuous processes provides a
recursion between the upward passage time p.d.f.'s 2;, and between the
downward passage time p.d.f.'s 3;, that is a direct matrix counterpart to
that present for birth-death processes where J = {0}. The recursion is

based on an argument similar to that employed there [6,4]. For N(t) to go’

e AR U
v,

c. ot Ae -;-}»-rn; s AL 2 A et ot

S AR

from n to n+l, it must either do so directly after motion on row n, or
& there must be a first downward transition to row n-1, a first subsequent

return to row n, and then a first subsequent arrival at row n+l, A

by T e R A
Lo ram,

probabilistic argument based on this then gives our basic recursive equation

S(8) = P (t)y) 4 pa (t)yest (ths'(t) , n2l (2.6)

= irae "

where the asterisk denotes convolution in time. That is, g(t)sh(t) =

ft a(t-t)b(t)dt. Consequently, from (2.6) and (2.3a},
0

o'(s) = vi* (s)a’ + v (s)a'c’ (s)o'(s), n>1 _ 2.7)
=qn a|n  =qn =N  s=n-]1]  =n -

. If we solve (2.7) for g;(s) and use (2.4) we obtain

[L- G &) +ae (N1g6) = G a . (2.8)

In place of (2.8) one has for n=0, from s;(t) = gso(t)v; and (2.4)

(1 - Ggoelo(s) = GRa. (2.9)

Equations (2.8) and (2.9) can be used to generate 2;(5) recursively. Similar

equations generate g;(s) recursively from‘g&(s) (cf 4.2). By letting s=0

we get:




e e A o e eir o eeem . eem———— e et i e e e - o . R . - - B -

| gL g o w0
|

| and

T

. [I_- ?:)]i; = g‘; (2.11)

. . . + . .
two recursion relations for calculating s . The equivalent relations for
s  appear in (4.4).
=-n

Differentiation of (2.8) and (2.9) with respect to s at s=0 leads to

.. the following relations for the mean first passage times:
K o -+ +  _ l - + +
= [L-a -2 s, = Slve p s (2.12)
: and
e 0. + 1 .+
I - = =S5 . 2.
‘ [L-aju Y = (2.13)

+ . . o - + . . .
We note that i-n is stochastic and in +_gn +_gn is stochastic. Hence, if

. . sy sas -+ . .
_a; is not zero (guaranteed by irreducibility) _a?‘ + 3,5, 1 is strictly
: . . . . o - +
:, substochastic, its spectral radius is less than one, and [I - a_ - 2. sn-ll

is invertible. One may therefore obtain 2;.‘ from (2.10) and p_; from (2.23}.

We also have that 1 <

o 1%

(s) < §_; for s>0 real, hence (with v/s+v < 1) we
s

find that [L - (5%) {

L[
=)

+ 3"1 gn_l(s)}] is invertible for s > 0 real.
Therefore (2.8) may be used to obtain g;(s).

O0f frequent interest in applications is the matrix passage time p.d.f.
s_on('r) describing the joint distribution of the time at which row n is
first reached and the state reached given a start at row 0. Specifically

s (1) = |

S on .(1)] where s

son;iJ j('r) = the joint probability density that

on;i
the set {(j,n):jeJ} is visited for the first time at (j,n) and the time

of first arrival is T, given start at (0,i). A simple probabilistic

argument shows that g5 (1) = 5.;(1)'11(?)‘...'5;_1(1). Correspondingly,

, Son(s) = g;(s)g;(s)...g:,_l(s)o




i
¢
2
3
1)
5
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3. Ergodic Probabilities

We can now use the passage time densities of Section 2 to find the
ergodic probabilities, as outlined in the introduction to that section.
The basic probabilistic argument for finding the transition probabilities
from the passage times goes as follows, If one is in row n at time O,
to be in row n at time t, either

a) one never left row n

b) one went to row n+l at some first time, returned to row n for
the first time subsequently, and was in row n at time t, possibly after
further wanderings,

c¢) one went to row n-1 at some first time, etc. as in b).

Consequently, one has, for the cases 0 < n < N, n=0, and n=N respectively,

B (t) = pr(t).+ vg;m(t)gl'gm(t)*gmct)

+ph (g %s  (1)°p (1) (3.1)
B, (t) = Bo (1) + vpi (t)a s (t)*p_ (1) (3.1a)
OB HORE SHOTREOMNOR MO (3.10)
From (3.1)
(s) = = (s) +vmr (s)a’ 1y (8 X (8) (3.2)
+w*n(s)gng;1(s) 5 (8) , 0<nc<N
so that :
VIt (s)as o, () - vit (9)as g (s)lm (s) = mt(s) . (3.3) é
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% One then finds, from (2.4), that

: o +
f;i Ihn(S) = (E::Q[ (;::ﬂ { 'h -h (s) + 2h a (5)}] (3.4)

To show that the matrix expressed within brackets is in fact invertible

- we let

(o] +
% ' %(s) = (?W) {211+£n2’n+1(s) +gho (s)} n=1,...,N-1. (3.5)

o + - - 3
Note that a_ + 2 2, is stochastic, and further

¥ LB ()] = e V'@ 6(t) + at st (8) + & st (1)), (3.6)

. = = =q =n =n+] =n =n-1

. therefore each row of'gn(s) is a2 convex combination of rows of matrix
p.d.f.'s. Hence, En(s) is itself the Laplace transform of some matrix
p-d.f., say En(t). Hence [L:gn(s)]isinvertible for s>0, real. With this

’ identification, (3.4) becomes

Inn(s) = (;::9 [1= (s)] n=l,...,N-1. (3.7

In fact, with the definition

B () = (5 {a) +al gi(s)) (3.8a)

S+V

and

By(s) = (o) fay + ay Oy (5)} (3.8b)

we immediately get (3.7) for all neN.

To find eT we must evaluate lim s 7 (s) = 1
s+0* “mn -

In [5] it is shown that




T e N

e e SR
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. I 1 oy JT
i-l-3+ $ Inm(s) = 3 T 5 " lem (3.9)
-bn &m -

T . . . .
where &y i the stationary left eigenvector for ﬁn(O) and by, is the mean

of .l?_n(t), that is

ton 8 = &, (3.10)
and
B = Io t b (t)dt. (3.11)

We can easily find ﬁn(o) by setting s=0 in (3.5),(3.8a) and (3.8b), while

B is accessible by differentiation via

Bon =8O = 18(0) et van i, nel.. Nl (3.12)
and
= Lg (0)+aty e L oae0) + a7yt
Bo = 58 S8 5 My =y Be(0) ¢ ay (3.13)

As we will see in Section 5, row balance

T - T +

Che1 2ns1l = & 2331, 0<n<N-l (3.14)

is always present. This enables one to evaluate '

T

"n TV Sndpnl (3.15)

recursively without computing Upn: and thus E; and 5, in the following

T 1 T
manner. From (3.9) one has & " ﬁ;: e bR so that
T - 1 T - . T + | T e+
Snel :n¢1 1 My, nel sb.n#l :nol 1 &n :n 1 My n Son :n
(3.16)

i el i s s

P

b e e w. e TR e meees b
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Hence, from (3.15) one sees that

,n+l &n+) L

+
m3nl

0<n<N-1 . (3.17)

mb,n+1 B mb,n

o FU

One may start with an arbitrary positive Mbo and then normalize at the

end. More specifically,

T K T .
[N m Son*  Bo >0, arbitrary (3.18)
n
and
k=[] 1 e ut. (3.19)
neN B,
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4. Summary of Computation Procedure

A tabulation of the key results obtained above is given to provide

* {

an overview of the formalism, and ease of access to the formulae needed i

for implementation. %

i + . SAURRPCIES ST |
2,6 = (1- G ) &RY a, (4.11
“.) ’ - + -1 +
£ SO = [1- G (e g (ONT G el
) " )

ae) = [1- Rl G ay 4.2)
- \Y) * - _1
| S0 ¢ - GR W mnaen? 6 5
* 0.~1 ¢+
- s " (L-23)" 2 (4.3)
. + (o} -+ -1 +
g S = [L-{a v, 5,0 2
sy = UL- 3§]'1 ay (4.4)
s. = [I-{a%+a s }]"1 a_
- = =N+l =ul)
wo= oy (L-207 s (4.5)
. + l 1 {o . a" + }-l I+ - *+ ] +
o= ML -{ag + a5, 407 (Leva w48,
wos s -t s (4.6)




-

v [} * - - +
B(s) = (9 [a,+2 9,080 +a 9

+ - - *

+ a8 S
-l wn+]

o
P® = 2

1 -1
a0 = G (1- _B_n(s)]

T T
Son 80y = L

i T - T + .
M T My o1 Cpn 20 Df @ony 5 D o my > 0 sbitray

K 7 : Kg[z_l_e'rll-l

T
e = — e
-n mbn =Hn

4.7

(4.8)

(4.9)

(4.10)

(4.11)
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§5. Row Balance and Row Generation

The computational procedure outlined in sections three and four,

although a rank-reducing procedure, can be improved by using set balance

on the state space, when mean passage times are not needed.

greater improvement can be realized when the 3; (or a”) are invertible
- =n

for all n. We have seen (§1) that the required invertibility is often

present.

To exhibit row balance (cf. 5.9) some preliminary tools are needed.

Lemma 5.1

Sne1 Znet 3:[1 -8 - -1 a s 1sncNl
and

18y & (Lo 8

Proof:

The forward equations are:

TR = i)+ ven() 8 ¢ vy 8y ¢ ) £

and

%{ E:(t) = -ng(t) + ygz(t) 2: . vEI(t) 2&

T

When we let t+w, so that EZ(t) *'gﬂ,

Theoren 5.4

If 3 is invertible for all 1 < n < N then

(5.2)

(5.2a)

(5.3)

(5.3a)

%E'B:(t) -+ Q? the result is immediate. M




T _ Ty .0 T - -1 i

Cne1 = e [L-231-e ;8 . 3a,) 1<n <N-1 (5.5)
and

T T o -\-1

31 = EO [-I- - EO] (11) . (5.5a)

Proof: trivial by Lemma 5.1. a

We see that when the ergodic distribution is desired, and this
invertibility present, the g: are available recursively via (5.4). This
corollary implies that one need calculate only one eigenvector (_ego) in

order to obtain the other _e_: recursively.

A similar result holds when the :; for 0 < n < N are invertible. The

recursion then begins with 2;.

Theorem 5.6

1f irxis invertible for all n>) then

T - T o T - + -1 . )

-e-n-l - {-e-n [L- E.n] " &l .in...l} (in—l) s =1,..., N-1 (5.7)
and

T T 0 + -1

en-; = ey [l-23y (ay ) - (5.7a)
Proof:

(5.7) is just (5.2) rearranged. The forward equation (5.3a) has its

counterpart on the top row

S OBN®) * - VBN * VB A%+ VB, (8) Ak - (5.8)

When t* (5.8) becomes (S.7a)u
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Even when neither set is invertible, set balance can be used to

normalize the g:n, as described at the end of section 3. We are now ready

to prove our basic result.

Theorem 5.9 (Row balance)

e'r a- .1 = eT a1
=n+]l _n+1 =  =n_n -~

for 0 < n < N-1
Proof:

Recall that a° 1 =1 - (g, + a)L and aj 1 =

this with Lemma 5.1 we get

T « T - T + T -
Sninl-fhzal " gl
and

T + T -
LN :o 1l = ¢&231

The proposition now follows inductively. G

Ld

(5.10)

+ e
- 8, 1. Combining

(5.11)

(5.11a)




: § 6, The Matrix Polynomial Representation of gon(s)

Important information on the dynamical behavior of a Markov chain
is contained in the spectral structure of its first passage time densities.
Knowledge of this structure, and that of the related relaxation time, is
essential when one wishes to use the ergodic distribution [6].

Towards this end we introduce a representation of gmn(s) of the
ela form gm(s)g;l(s), where Q_(s) is a matrix polynomial.

%1 - The set of poles of Emn(s) correspond to spectral lines.

Our approach closely parallels the work done on one-dimensional ;
birth-death processes in [2,3] and [6]. This representation will be
used to discuss the structure of 50“(1) and simple related results., We
also indicate how this representation may.be used, in principle, to obtain {

the relaxation times.

Thoerem 6,1

If 2; is non-singular for all n, define

Qi) = @ IED - a0 (s) - al o (s)] (6.2)
] ; with
X Qe = I ;g = @ iEY 1 - . (6.2a)
Then
the matrix polynomial gn(s) is invertible ¥ s >0 (6.3)
gn(s) = 9.(s) Q71 (s) (6.4)
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Proof: (By induction)
Clearly (6.3) is true for n=0, If we rewrite 0.1(5) as Ql(s) =
(sw +.~1

)()

gl(s) is invertible for all s > 0. Thus (6.4) makes sense and is clear-

[I - ( ) a ] ; a is strictly substochastic hence

ly true for n=0. Now assume Qn(s) is non-singular for 0 <n <M and

gi(s) = gn(s)g;ilcs) for 0 <n < M-1. Then

Q) = @t LY - g6 - 5 Q)] 6.5)
(s:v [I - (s,\,) {gM MOBINOE

By the same argument as that for (2.8) et al., we get that Q-M*l(s)
is invertible ¥ s > 0. Postmultiplying (6.2) by Q:nl (s) and inverting

one has g;(s) = gM(S)Q

-M+1(s)’ from (2.8). G

We note immediately that the recur;ion relation (6.2) implies that
(Qh(s))ij is a polyaomial in s of degree n. The decomposition (6.4) will
be seen to be useful in a variety of ways.

The gn(s) arrays allow one to evaluate first passage times upwards
and downwards over a number of rows rather easily. The following theorems
illustrates this:

Theorem 6.6

In the context of Theorem 6.1,

a) g (s) = Q;l(s) for n > 1
B Q@ = @ (ig ¢ - - (0]
with Q1(0) = 0 and Qj(0) = 1 (ah
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-1 ' -1
¢) M. Q, (0 9, (0)Q “(0)

Proof:
n-1 . n-1 -1 -1
a) g (s) = @ o (s) = (s) (1 (s)Q,(s))Q " (s)
=On m=0 will % m=1 &ﬂ &'n 2l"l

= g '(s) by Theorem 6.1

b) From (6.2) we get

Y1) = @ Q) + (EDL - adg)(s) (6.7)
- 80 901 ())

At s=0 this becomes (b). The cases n=0,1 are trivial.

¢} From (a) Qn(s)gon(s) = _I., hence

Q1 (s)gon(s) + @ (s)gl () = o. (6.8)
Therefore,
Mon * - 2n® = &GO (6.9)

Theorem 6.6 provides a computationally easy way to calculate the
mean upwards passage times when the 2; are invertible. A dual argument
eases the computation of downwards passage times when the 3; are invertible.

The explicit formulation for arbitrary upwards passage times follows.
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Theorem 6.10
) g () = QL) for0<m<n<N
) by ¢ %(0’%1(0)%(0)g‘(0) - g'n(O)g;l (0) for0<m<n<N

Proof:

a) Since gom(s)gm(s) = gon(s) the result follows from (6.6a).

b) We use (a) to obtain gmm(s)gh(s) = Qm(s), differentiating at s=0,

one finds that

g,l'm(o)gn(o) + gm(o)g_;‘(o) = g‘n(o)- (6.11)
From (a) and the identity En = -c-‘r'nn (0) statement (b) follows.n

We note that g;(s) = Qn(s)g;il(s) implies that

* 0)Q"! (0 6.12
s o= 9 (0g (0. (6.12)

Thus, calculation ofg_n(O). and g_;’(O) is sufficient to give Son and B
directly (i.e. non-recursively, and efficiently).

The matrices 9_n(0) and 9,;_.(0) can be calculated recursively using
(6.2) at s=0, and (6.6b). Knowledge of the matrices allows us to
evaluate the mean ergodic exit time and mean stationary sojourn time,
two useful measures of the dynamical behavior of the queue [6]. Both are
defined with respect to a partition of the state space into two disjoint

connected sets, called the good set and the bad set.

The ergodic exit time is the time required to leave the good set

- o y
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given that the system has settled down, i.e. is at ergodicity (and, of

course, that it is in the good set). Thus, the mean ergodic exit time,

when

G, = {G,m) :n<m} , B = {(G,n): n>m (6.13)

is given by

MEm Ergodic exit time from Gm (6.14)

u
~1

1 T
RS

n<m

since entry into Bm is at row m. Using Theorem 6.10, we get

u . D<o (6.15)
En )
n<m

I e (097109 00 0 - o' ) 1
=n ‘eq =n ‘= =n -y

eT 1
~—11—s

The stationary sojourn time is the time required to first leave the
good set given that the system was stationary and a transition into the

good set from the bad set just occurred. We have

Mym = Stationary sojourn time on qm

= e a1 /T_gn-ll- (6.16)

This can be rewritten in a simpler form using a well known result [6] as

by = P (c)/ (6.17)

A e ¥ e e

A s 5 10 Ao ¥ - - sty g o




%

=
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where P“(Gm) is the total ergodic probability on the set Gm' and i

B G
nm
is the ergodic probability flow from Bm to Gm. This is
T T -
= J e lfve a1 (6.18)

N
. . . T .
For the ergodic exit time to B when P_(B) = Ye 1<<1asis

often present for systems with adequate capacity or high reliability

“only the mean exit time is required. This may be obtained from a line

searchéf Det (Qm(s)) along the negative real s-axis. Discussion of this

is postponed to a subsequent paper.
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§7. A Tandem Queue Example

A tandem queue is a queueing system with distinct service facilities
connected in series, i.e. the customer output stream of the first facility
is the input stream of the second [9]. To illustrate the algorithmic
procedure we have developed, one such tandem queue will be analyzed.

The example selected has been chosen primarily for didactic reasons.
A more complex and realistic example could have been analyzed with little
iﬁcrease in machine cost.

The tandem queue evaluated is a two server series queue with block-
ing and finite buffers (see §1.E). The first service facility has 8
buffer slots and 4 servers. The second facility has 4 buffer slots and
5 servers. A flow diagram is given in Figure 7.1. The corresponding
rate matrices are given in Figure 7.2. When the first queue is full
customers balk and go elsewhere. When the second queue is full, the
first queue stops serving until a space at the second facility opens up.
The model can easily be modified to allow different types of blocking,
and features such as feedforward, feedback, etc.

In Figure 7.1 the occupancy level at the first facility is given by
the coordinate j which corresponds to the number of people in service or
waiting there. The occupancy level at the second facility is given by
the coordinate n. The blocking may be seen in the absence of the
transition rates associated with ul on the top row.

Figure 7.2 displays the three ratrices N:’ 3;. and y; when n=3,
The matrix 3: is upper diagonal (A) for all n. The only transitions

which have no impact on the 2nd queue are the arrivals (at rate )) to

the first queue, which increase that occupation level by 1. The matrix
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dia 1, i
v is gonal, with diagonal elements uz-nin{n,kz} where kz is the ;
number of servers in the 2nd service facility. Finally, v’ is lower ;
=-n

diagonal. Increases in queue length at the 2nd service facility are

caused by departures from the first facility.

The results are shown in Figs. 7.3 (a),(b),(c), 7.4 and 7.5 for a
traffic intensity of 0.4 at the first facility and 0.6 at the second.
Figs. 7.3 (a), (b),(c) describe the ergodic probabilities as a function
of.(j,n). An examination of these figures immediately reveals two features.
First, the ergodic probabilities are signficant for modest values of j
and n, arising from the moderate traffic intensities. The small ridge
visible along the upper edge of Fig. 7.3 (a) indicates some blocking.

The ergodic probabilities may.be useless when system parameters
changé before ergodicity is reached. The information contained in the
first passage times may then be helpful. The ergodic distribution, for
example, might cause concern over large probabilities of saturation,
blocking, long waiting times and so on. If, however, we look (cf. Fig.
7.5) at the mean first passage times from idleness, we see that the
mean time to saturation is on the order of 4 days (when our time scale
is in hours). 1If this queue modeled a system that starts anew each day,
one would be less inclined to worry.

The tables in Figure 7.4 give, for differing levels, the
mean sojourn time [6], i.e., the mean time spent above a certain level
after the level is reached. This gives a feeling, for example, for

the persistence time in a congested state. The table 7.5 presents
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mean first passage times one step upwards (downwards). The (j,n) entry
in the table is the mean time to go from (j,n) to a state in the row
n+l (n-1). Again, the effect of blocking is noticeable in the dropoff
(for the upward table) of the passage time with increasing values of j.
Ergodic distributions for the same system with different parameters

are shown in Figure 7.6 for comparison purposes.
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Fig. 7.1 Transition rate structure for the tandem queue

Transition rates are shown for representative edge, corner, and
interior states.

B




Y

o
v =
vV o=
=3

+

Y, =

Fig. 7.2 Transition rate matrices for the tandem queue model
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Fig. 7.3(b) The ergodic probabilities for the tandem queue model
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Fig. 7.3(c) The contours of the ergodic probabilities
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§8. Rank Reduction in the Row-Continuous Model

The algorithms presented in the preceding sections exploit the
block tridiagonal structure of the transition rate matrix associated
with a bivariate row-continuous markov chain. These algorithms are
considerably more efficient than the general algorithms for computation
on a markov chain both in computer time needed to attain desired results
and in storage needed to perform these computations. To illustrate this
fact we compare the resources required to calculate ergodic probabilities
fcr the tandem queue of section 7.

We note that the tandem queue is not time reversible, and so we
could not have used detailed balance simplification. We also note that
the mean passage times, themselves of some importance, are a byproduct of
the row-continuous ergodic distribution calculations. Finally, the
tandem queue does have the property that 3; is trivially invertible,

a feature which reduces computation time.

In order to calculate ergodic probabilities efficiently we must
store the g;. §;. gg. of course, as well as the 3; and 3;* The storage
requirements are then O(JZN). For a contiguous problem (such as this)
one would pick the row direction J(t) to be that with the fewest states.
A naive generalized approach would store the full transition matrix,
thus using up O(JZNZ) memory locations. For example, one tandem queue
problem with J=8 and N=80 was evaluated in a workspace of 140,000 bytes.
The transition rate matrix for the bivariate problem would require more
than 4,000,000 bytes alone.

The example of section 7 was coded in APL, a notoriously inefficient

language. Table 8.1 gives some times for the tandem queue evaluation.
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These were run on an Amdahl 470 v/6 timesharing with 20 users. The
timings include all setup and all calculations required to find the
ergodic probabilities. For comparision purposes, a single eigenvalue
was found for a 64 x 64 transition matrix. This requi-ed approximately
70 CPU seconds using an optimized successive approximation. No effort
was made to optimize the programs used for Table 8.1. In fact, the
matrices were regenerated when needed.

A complexity argument can be used to find the number of operations
required to evaluate the ergodic distribution. This would severely
understate the advantage of using the previous algorithms, because a
general approach would require repeated paging in and out of the system

parameters for a problem of any size. Nevertheless, the run-time was

determined empirically as O(JZN). We expect that when it is necessary to

calculate (5;)'1, rather than being able to explicitly determine them

(as in the tandem queue where‘j; is diagonal) the calculation time would

be O(JSN), still a grest improvement over the general case.
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J N CPU time (seconds on an IBM 370-158)
2 2 1.2

4 4 1.7

4 16 5.3

6 60 22

6 80 28

8 8 4.6

8 16 8.5

8 40 20.2
8 80 40

12 16 16.4
12 24 24

16 8 17.5
16 16 31

Fig. 8.1 Approximate CPU time required to calculate

ergodic probabilities
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